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ABSTRACT

Robust Constrained Optimization Approach to Control Design for International Space

Station Centrifuge Rotor Auto Balancing Control System

Barry Dirk Postma
This thesis discusses application of a robust constrained optimization approach to
control design to develop an Auto Balancing Controller (ABC) for a centrifuge rotor to
be implemented on the International Space Station. The design goal is to minimize a
performance objective of the system, while guaranteeing stability and proper
performance for a range of uncertain plants. The performance objective is to minimize

the translational response of the centrifuge rotor due to a fixed worst-case rotor

imbalance. The robustness constraints are posed with respect to parametric uncertainty in

the plant. The proposed approach to control design allows for both of these objectives to
be handled within the framework of constrained optimization. The resulting controller

achieves acceptable performance and robustness characteristics.
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1 Introduction

The Japanese Aerospace Exploration Agency (JAXA) plans to participate in the
development of the International Space Station (ISS) by providing a centrifuge to be used
for scientific experiments.  The centrifuge will be housed in the Centrifuge
Accommodation Module to be assembled with the ISS in the configuration shown in

Figure 1-1 [1].

. "~ Centrifuge
1< - Accommodation Module

Figure 1-1. Location of the Centrifuge Accommodation Module

The centrifuge would serve as a home for a number of rodents (or other test
specimen). The rodents are allowed to move within habitats that are housed in the

centrifuge rotor as shown in Figure 1-2.
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Figure 1-2. Side/Top View of Rodents in Habitats

Rodent movement within the habitats introduces an imbalance in the rotor that
causes rotor vibration while the rotor is spinning. This imbalance must be cancelled to
avoid the transfer of disturbances from the centrifuge rotor to the ISS. An active control
system must be introduced to cancel imbalances in the rotor.

Methodologies for limiting the vibration of spinning rotors have been presented in
the literature. These methods can be divided into two techniques: direct active vibration
control and active balancing techniques using mass redistribution. Direct active vibration
control uses magnetic bearings that generate an external lateral force on the rotor, while
active balancing uses a mass redistribution device to eliminate the rotor imbalance.
Meirovitch presented an overview of active vibration control in [2]. These methods can

be applied to the direct active vibration control for a spinning rotor. Knopse presented




extensive work in [3]-[6] using adaptive open-loop control to suppress the rotor vibration
using magnetic bearings as actuators. Herzog presented a method in [7] that also
employed magnetic bearings and used notch filters in the control system. Fan introduced
a vibration control method in [8] for an asymmetrical rotor using magnetic bearings.

The Auto Balancing Controller (ABC) for the centrifuge rotor is classified as a
mass redistribution type of controller. Using mass redistribution techniques, Van De
Vegte first proposed a modal balancing method for the balancing of spinning rotors
during operation [9]. Gosiewski proposed a control method based on modal analysis of
the rotor vibrations using a computer as the controller in [10] and [11]. Dyer and Ni
introduced a balancing method based on influence coefficients to achieve on-line
estimation and active control [12]. Many of these methods were developed for the case
of a constant rotational rotor speed. More recently, Zhou and Shi developed several
balancing methods for speed-varying rotors presented in [13]-[15]. A thorough summary
of work in the area of active balancing and vibration control of rotor systems is presented
in [16]. In those methods, it is assumed that a rotor speed is either known or estimated
exactly; the issue of control system robustness is never addressed. It is important to
account for the linear-time varying dynamics of the rotor when using these approaches.
In this thesis, a constrained optimization approach is proposed to design an ABC that can
robustly cancel rotor imbalances by redistributing mass in the presence of system
uncertainty. With the proposed methodology, both time domain and frequency domain

stability and performance requirements can be easily included in the design process.




The remainder of this thesis is divided into five chapters.

Chapter 2 provides relevant problem background. A description of the centrifuge
rotor system and the ABC system is presented.

Chapter 3 presents technical background for the solution of the problem. System
robustness for multivariable systems is discussed, and the solution method is introduced.

Chapter 4 explains the method used to solve the control problem. This section
describes the implementation of the robust constrained optimization approach to control
design and how it was applied to design an ABC system.

Chapter 5 presents the results of the control design. The system is analyzed in
both the time domain and the frequency domain. Also, the results of Monte Carlo
simulations are presented.

Chapter 6 summarizes the topics in this thesis and presents suggestions for

possible future work related to this problem.




2 Problem Background

In order to delineate the methodology used to solve the ABC design problem, it is
important to properly describe the centrifuge rotor system. In this section the centrifuge
rotor system and the ABC system are described in detail. Following the system

description is a general statement of the problem to be solved in the design of an ABC.

2.1 Centrifuge Rotor System

The purpose of the centrifuge is to simulate varying levels of gravity so that the
effects on the rodents can be studied. The centrifuge achieves the effect of varying levels
of gravity by spinning at different steady-state rates. In order to reach a desired level of
simulated gravity the rotor must go through a “spin-up” when the spin rate is slowly
increased to the desired level.

The spinning centrifuge imparts a centrifugal force on the rodents that serves to
simulate gravity. The centrifugal force increases with increasing spin rate. An

illustration of how the centrifugal force acts on the rodents is shown in Figure 2-1.
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Figure 2-1. Illustration of Centrifugal Force Acting on Rodents

The centrifugal force acting on an individual rodent is specified by the equation

Force=M ro?, (1)

rodent

where the symbol Force refers to the centrifugal force on the rodent (N), Mogen: is the
mass of rodent (kg), r is the distance from spin axis to rodent (m), and ® represents the

spin rate of centrifuge rotor (rad/sec).




The purpose of the ABC system is to balance the rotor when the rodents have
imposed an imbalance. An illustration of the rotor and balancer masses is given in Figure

2-2.

Habitat Habitat
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Balancer
()]
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Figure 2-2. Rotor and Balancer Masses

If all of the rodents move to the same corner of their habitat, the center of mass of
the rotor shifts in that direction. The ABC utilizes sliding balancer masses as pictured in
Figure 2-2 within the rotor to cancel such imbalances. The static balancer masses are
utilized to correct imbalances that cause the rotor to translate in the ({,n) plane. The
dynamic balancer masses are utilized to correct imbalances that cause the rotor to tilt
about the ({,n) axes. An illustration of the static balancer masses canceling an imbalance
is given in Figure 2-3. The dynamic balancers work in a similar manner to cancel

imbalances.
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Figure 2-3. Illustration of Balancer Masses Canceling an Imbalance

The naming convention for the balancer masses and positions is described in
Figure 2-4. There are two types of balancer masses: static balancer masses (rectangles in
Figure 2-4) and dynamic balancer masses (circles in Figure 2-4). The set of static
balancer masses moving in the same direction along the {-axis is denoted by the subscript
bl and the set of static balancer masses moving in the same direction along the n-axis is

denoted by the subscript b2. The symbols (i and Ny, are used to describe the position of




the set of balancer masses along the respective axes. The dynamic balancer masses also
work in pairs. Each mass is paired with the dynamic balancer mass diagonal to it. The

masses in a pair of dynamic balancer masses move in opposite directions parallel to the

E-axis (which is pointing out of the page in Figure 2-4). For instance, if the dynamic

balancer mass in the upper right quadrant of Figure 2-4 moves up, the balancer mass in
the lower left quadrant moves the same distance in a downward direction. These mass

positions are denoted by &3 and &4 corresponding to balancer mass names in Figure 2-4.

Top View of Rotor

b3

Figure 2-4. Balancer Mass Names and Positions

There exists a maximum imbalance that the rodents can impose on the system.

The maximum imbalance occurs when all of the rodents are positioned in the same corner
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of their habitats. This moves the center of mass of the rotor the furthest distance from the

spin axis of the rotor. Such an imbalance is illustrated in Figure 2-5.

AT

ral
I Spin Axis

Top view
of rotor

Habitats —

Figure 2-5. Maximum Rodent Imbalance Imposed on the Rotor

In this case all of the rodents are positioned in the upper-right corner of their
respective habitats. Equally large imbalances occur if all of the rodents move to any
other corner of their habitats at the same time. This maximum imbalance is used to
evaluate controller performance in Chapter 4 and Chapter 5.

Note that there are two separate coordinate frames used with respect to the
centrifuge rotor. They are shown in Figure 2-6. The (x,y) coordinate frame is fixed with

respect to the centrifuge base, and the ({,n) coordinate frame rotates with the centrifuge
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rotor. Both coordinate frames are used since the rotor displacement sensors work in the
fixed coordinate frame and the input to the ABC is a measurement in the rotating

coordinate frame.

9=(1)t X

v

Top of

Rotor .
¢,n coordinate frame

rotates with the rotor

Figure 2-6. Rotor Coordinate Frames

A coordinate transformation as shown in Equation ( 2 ) is used to change

coordinate frames. Specifically,
o cos(ax) sin(ax) || x
| o (2)
n —sin(ax) cos(ax) | y|.
The ABC system is used to limit the translational response of the rotor due to
imbalances imposed by the position of the rodents within the habitats. The input to the
controller is an absolute measurement of the rotor displacement (translation and tilt) as

shown in Figure 2-7. The centrifuge rotor sensors measure relative displacement

between the rotor and the International Space Station. With this relative measurement,
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the absolute rotor displacement can be estimated using a Kalman filtering technique [17].

In this thesis it is assumed that these absolute rotor measurements are already available.

AMAAA__L
=}

Rotor Translation Rotor Tilt

Figure 2-7. Rotor Translation and Tilt

The equations of motion for the centrifuge rotor in the fixed frame coordinate
system (x,y coordinate system) are derived below. First, the equations of motion in the
translational direction are derived for the system in Figure 2-8. Then, the equations of

motion in the tilting direction are derived for the system in Figure 2-9.




Figure 2-8. Model for Derivation of Equations of Motion in Translational Direction

The equations of motion in the translational direction [17] can be written in each

axis as
(3)

(4)

The symbol F denotes the external force on the rotor due to springs, dampers,

control inputs, and external disturbances. The equations of motion can thus be written

F,=-C,(x-Lsing,))- K, (x—Lsing ) +u, +d, (5)

F,=-C,(y+Lsing,)-K (y+Lsing,)+u, +d,.
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where the symbols x and y denote the translation of the rotor in the fixed coordinate
frame, ¢x and ¢y are the tilt of the rotor in the fixed coordinate frame, u is the input force
due to balancer mass position, d is the disturbance force due to rodent position, M is the
mass of the rotor, C and K denote damping and stiffness coefficients between the rotor
and the outer wall of centrifuge, and L is the distance from the rotor center of mass to the
base of the rotor where the springs and dampers act.

Using the small angle approximation and making the substitutions

Ch,=C,=C,, (7)
K,=K,=K,, (8)
¢,=-C,L=-C|L, (9)
and
K,=-K,L=-K L, (10)

the equations of motion in the translational direction can be written in the form

Msi+C,x+Cphp, + K, x+ K0, =u, +d, (11)

and
My+c,,y—c,2¢3_,+1<“y-1<n¢x=uy+dy. (12)

To derive the equations of motion in the tilting direction, the model in Figure 2-9
is considered. The symbols K,, and C,, denote rotational stiffness and rotational
damping, respectively, about the y-axis. The translational springs/dampers in the y-axis

and the rotational springs/dampers about the x-axis are not shown in the figure.




Figure 2-9. Model for Derivation of Equations of Motion in Tilting Direction

With the small angle approximation, the equations of motion in the tilting

direction can be written in the form [19]

=T, (13)

1,6, +1.09,
Idéy i I:w¢;x

where o is the spin rate of the rotor, Iy is the transverse moment of inertia of the rotor, I,
is the polar moment of inertia of the rotor, and T is the external torque applied to the

rotor.
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Specifically, the symbol T denotes the external torque on the rotor due to springs,

dampers, control inputs, and external disturbances. The torque can be written as

T,=-C,Ly-C,$ —-C,L’sing, —K Ly-K,¢ —K L'sing +u, +d, (14)

and
; ; 2 i i
T,=CLi-C,9, -C,L'sing +K,Lx—K, ¢, —K L'sing, +u, +d,, (15)

where uy is the input torque in the indicated direction due to balancer mass position and
dy is the disturbance torque in the indicated direction due to rodent position.

Using the small angle approximation the torque can be written as

T,=-C,Ly-C,9 -C,L’'p —K Ly-K, § —K L'¢ +u, +d, (16)
and

T, =ClLx-C,$ -CL'0, +K ILx—K, o —K.L'¢, +u, +d,,. (17)

Make the substitutions

Cp=C,+C,[’=C, +C.L*, (18)
Ky,=K,+K,L’=K,+K I, (19)
C,=-C,L=-C,L, (20)

and

K,=-K,L=-K|L. (21)




Then, the equations of motion in the tilting direction can be written in the form

ld&x —C12y+C22¢x +w1:¢_v ~-K,y+ K0 =u, +d,

1,0, +Cpi+Cpd, 0l § +K,x+K,0, =u, +d,,.
Now, the full equations of motion can be written
Mi+C,x+C,o, + K, x+K,0, =u, +d,,
Mj+C,y-C,0, +K,y-K,b =u,+d,,

Idéx —C,2y+C22¢x +w1:¢y -K,y+Ky,0, =u, +d,,

1,0, +Cpx+Cpp, -0l 9, + K ,x+Kp,p, =u, +d, . (27)

The equations of motion in the rotating coordinate frame (see Figure 2-6) can be
derived from the equations of motion in the fixed frame given in Equations ( 24 ), ( 25 ),
(26 ), and ( 27 ). The importance of deriving the equations of motion in the rotating
coordinate frame is emphasized in Section 2.2.

Begin with the equations of motion in the fixed frame (Equations ( 24 ), ( 25 ),

(26 ), and (27 )) and apply the coordinate transformations

NRH
HEH

s




p= cos(at) —sin(ar)
| sin(ar)  cos(ax) |

Also, introduce R in the transformations

sin(ax)  cos(ax)
—cos(ax) sin(ar)

=]

Differentiation in time of Equation ( 28 ) and Equation ( 29 ) yields

A




Differentiation in time of Equation ( 35 ) and Equation ( 36 ) yields

A
HREHEHEH]

Differentiation in time of R from Equation ( 30 ) yields

and

= —wRI
wcos(@) -wsin(w)|

B [— a)sin(a)t) - wcos(wt)j'
Differentiating in time of Equation ( 39 ) yields

g i g

Also, R is defined in the same manner as R where

wcos(ar) —wsin(ar)

EzRiz—(le_)I_=wR={ _
wsin(ax) wcos(awr)

|
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(37)

(38)

(39)

(40)

(41)




Then, Equations ( 24 )—( 27 ) can be recast in the form

R SR AT B

¢ _¢{ b u£+d;
g K,lRMJr KIZR{%J - RL” +dJ

1,| R ¢‘ +2R ¢:5 +i\"[¢;} +Cp,| - [
K2 ?, ?, ) '
v, R +R[¢§} +al, R|% |+ R
L |9 9, oy

oftr]

" Ugy +d gy |

With a similarity transformation [20]

. cos(ax) sin(ax)
| —sin(ax) cos(ar)

and the identities

L
R'R=
0 1
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and

r - 0 w 0
R'R=R"'(wR)=wR'R = " (49)
@

Equations (42 ) and ( 43 ) can be written in the form

Al BT SED=(HE ST
it (M P 4| S H R W A ol

n n

s A
9,| (20 0 o, 0 -9,
+C,, [0 _l} 4 +{—w 0}[5] +C,, % +[0 —w] % (51)
1 415 0 -wjn “1 2, w 0 |9,
(L R R e Y M R
-1 0] g, | L0 g, L o0jn] 0] [4etde],
Collecting terms, the final coupled equations in the rotating frame become
MF}L[C“ —2ij|[{}+[—Mw2+K” -C,@ }[;]
i| [2Mo  C,, | C,@ -Mo’ +K,, |7

. (52)
+ 0 CIZ ¢; G Cl2w K12 ¢( - Uy +d{
_an 0 ¢n _an Clzw ¢r7 u, +d'1
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and

[«q [ e, —20,w+al, }[ﬂ
Ll | ;
9, | [21,0-al, Cy 9,

5 _I 27 — L %
| (I,-1,)+K,, 7 C,,w [ (53)
L szw w-(lz_ld)+K22 ¢'l
—KIZ

& SIpbe el
_Clz 0 77 KIZ _CIZw n u¢rl+d¢rz .

If the coupling terms are neglected, the equations become

M ; " CH -2Mw { 4 _Mw2+K|| —C”(U ; - u£+d{ (54)
7 Mo C,, n C,w -Mw® + K, |7 u, +d,

and

&, [ C,, —21,,a)+a)l:] 9,
Ll 2 |6 .
2, 21, 0—-al Cy ?,

. o*(I,-1,)+K,, -C,o P | U Hdy
Cp0 @*(I,~1,)+ Ky, || 4o +dy

where  and n represent translation of the rotor in the rotating coordinate frame,

(55)

¢¢ and ¢y represent tilt of the rotor in the rotating coordinate frame, u is the input
force/torque due to balancer mass positions (Lp1,Mb2.Ep3.804), and d is the disturbance
force/torque due to rodent position.

Note that the dynamic behavior depends on the spin rate of the rotor, m. Since ®
can vary in time, the equations of motion represent a linear time-varying system. This

requires that any ABC must stabilize the system for the range 0 < 0 < Wyay.
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It can be verified that the system with uncoupled dynamics (Equations ( 54 ) and
( 55 )) closely approximates the system with coupled dynamics (Equations ( 52 ) and
( 53 )) by comparing the frequency response of each system. A comparison of the
frequency response of each system in one of the translational directions () and one of the

tilting directions (¢¢) is presented in Figure 2-10 and Figure 2-11.

Bode Comparison - Cmgoled vs. Uncoupled
Co1~>

coupled
uncoupled | |

10+

20+

Magnitude (dB)
&
o

60— .

10" Frequency (rad/sec) 10

Figure 2-10. Bode Comparison - Coupled vs. Uncoupled Translational Direction




Bode Comparison - Coupled vs. Uncoupled
Spa~> ¢

coupled
uncoupled

Magnitude (dB)

n L -

10" Frequency (radfsec) 10"

Figure 2-11. Bode Comparison - Coupled vs. Uncoupled Tilt Direction

It is clear that the frequency response of the uncoupled system closely matches
the frequency response of the coupled system. This verifies that the uncoupled system
can be used to approximate the coupled system. This approximation is utilized in the

controller design presented in Chapter 4.

2.2 Auto Balancing Controller

As previously mentioned, the objective of the ABC system is to limit the
translation of the rotor due to imbalances imposed by the position of the rodents within
the habitats. This includes limiting both the peak translation of the rotor and the steady-
state translation of the rotor due to a fixed imbalance. Additionally, the control system
should be robust to uncertainty in the rotor spin rate, ®, over the range 0 < ® < Wm,x, and

be robust to other forms of uncertainty in the plant. Finally, the controller should avoid
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commanding the balancer masses to change position quickly, causing saturation in the

balancer mass speed. By avoiding actuator saturation, the linearity of the control system
is preserved.

Based on the rotor displacement, the ABC commands the position of the balancer
masses in order to cancel a rodent imbalance and limit the translation of the rotor. A

simplified block diagram of the linear system is shown in Figure 2-12.

Rodent Disturbance Rotor Translation
>

Balancer

= Rotor Displacement
Mass Position P

Figure 2-12. Control System Block Diagram

As discussed in Section 2.1, the ABC system operates in the rotational coordinate
system. Since the absolute displacement is estimated in the fixed coordinate system [17],
a coordinate transformation as shown in Equation ( 2 ) is required convert the sensor
displacement to the rotating coordinate frame before it is used by the ABC. For the
design of the ABC system, the plant dynamics can be formulated in the rotating
coordinate frame yielding Equation ( 52 ) and Equation ( 53 ). While the ABC can be

designed using the dynamics in the rotating coordinate frame, the implementation of the
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controller is performed on the fixed frame dynamic model with the coordinate
transformation.

It is necessary to design the controller using the rotating coordinate frame to
effectively cancel imbalances and limit the steady-state translation of the rotor. To
illustrate this, it is necessary to see a plot of the rotor translation in each coordinate frame.
Plots of the rotor translation in each coordinate system are shown in Figure 2-13 for a
stationary rodent imbalance (as described in Figuré 2-14) in the open-loop (uncontrolled)

system. The rotor is rotating at a constant spin rate.

6 X 10*  Rotor Translation in x (fixed frame) , 10°* Rotor Translation in zeta(rotating frame)

=
&
=}
=2
L}
)
4
®
s
<
.
=}
<]
04

Rotor Translation (m)

40 80 40 80
Time(s) Time (s)

Figure 2-13. Comparison of Rotor Translation in Fixed and Rotating Coordinate
Frames

It is worth noting that in the fixed frame coordinate system (x-direction), the
response is oscillatory, while in the rotating frame coordinate system ({-direction) the
response is nearly constant after the transient effects subside. This is a result of the fact
that the rotating coordinate system is rotating with the rotor imbalance. The rotor

translates in the direction of the imbalance which remains the same in the rotating frame,
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but changes in the fixed frame. This effect is illustrated in Figure 2-14 where the
imbalance is initially (at time = t1) in both the x-direction and the {-direction, but as the
rotor rotates through angle w(t2-t1) the imbalance is no longer in the x-direction but it

remains in the {-direction.

=m(t2-t1)

A
T

Top view of Top view of  imbalance
rotor i rotor

Time = t2

Figure 2-14. Comparison of Imbalance in Fixed and Rotating Coordinate Frames

The importance of this result is that for steady-state error to be limited by the

control system, the integral of the rotor displacement must increase as long as the error

remains present. Since the response in the fixed frame coordinate system oscillates about
0, the integral is not increasing and the steady-state error cannot be eliminated. The
integral of each signal is shown in Figure 2-15. Clearly, the rotating coordinate system
must be used to limit steady-state error since the integral of the displacement is not

increasing in the fixed frame coordinate system.




x 10 Integral of Rotor Translation in x (fixed frame) - Integral of Rotor Translation in zeta (rotating frame)
1 . v — . . v

Integral of Rotor Translation (m*s)
Integral of Rotor Translation (m*s)

40 60

20 40 B0 80 100
Time (s)

Time(s)

Figure 2-15. Comparison of the Integral of Rotor Translation in Fixed and Rotating
Coordinate Frames

Figure 2-16 is a block diagram of the controller. The symbols Kp, Kd, and Ki

represent constant gain matrices of size 4x4.

(1L »du/dt
Displacement T Comm
Measurement LRI Mass Pos

1

s+0.0003 :
Modified Integrator Ki 4x4

>

Figure 2-16. Block Diagram of Controller

A modified integrator is used, as opposed to a true integrator (1/s), in order to

avoid adding poles on the jw-axis of the complex plane. By adding the poles slightly in
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the left-half-plane, the robust stability of the control system is improved. An example of
this improvement is presented below.

To illustrate the improvement in robust stability, a single-input, single-output

(SISO) system is considered with pure integral control (K/s) and modified integral

control (K/(s+p)). Block diagrams of the system in each configuration are shown in

Figure 2-17 and Figure 2-18.

Figure 2-17. System with Pure Integral Control

Figure 2-18. System with Modified Integral Control
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The symbol P denotes the plant and is specified by the equation

Pz—l— (56)
5 . 1€ k
st +—s+—
m m

The system parameters are assumed to be K=1, p=1, m=1, ¢=2, and k=1. A plot

of the poles of the transfer function from r to y for each system is given in Figure 2-19.

. Poles for Pure Integrator and Modifed Integrator

Y = = I T

X with pure integrator %

081 X with modified integrator X

0.6
0.4
0.2

Imaginary Axis
X
X
I

0.2} 1
04l )l
06} i §
08} X

Real Axis

Figure 2-19. Poles for Systems with a Pure Integrator and a Modified Integrator

It is observed from Figure 2-19 that the system with the modified integrator has
closed-loop poles farther from the jw-axis than the system with the pure integrator. In
general, this corresponds to a system with better robust stability since it will take a larger
perturbation for the closed-loop poles to move to the unstable region on the right side of
the jw-axis. This is demonstrated by allowing the damping coefficient to decrease until

instability is reached. For the system with the pure integrator the pole plot of the closed-
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loop system is presented in Figure 2-20. The plot shows the poles for decreasing values

of the damping coefficient, c.

Poles for Pure Integrator with Perturbation in ¢

c=2.0
c=1.5
c=1.0
c=0.5

Imaginary Axis

Real Axis

Figure 2-20. Poles for Pure Integrator with Perturbation in ¢

From Figure 2-20 it is seen that the system poles cross into the unstable region for
¢ = 1.0. Therefore, the pure integral control is able to tolerate a 50% variation in the
damping coefficient.

For the system with the modified integrator the pole plot is presented in Figure

2-21 for decreasing values of the damping coefficient, c.




32

- Poles for Modified Integrator with Perturbation in ¢

X =20 77177
X c=1.5 X X X
1r X c=10 Xx 2 0
X c=05 /
. 05} X ¢=0.0 § |
Z 4
P i
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I o 15 | -0.5 0 05
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Figure 2-21. Poles for Modified Integrator with Perturbation in ¢

From Figure 2-21 it is observed that the system poles cross into the unstable
region for ¢ = 0.4. Therefore, the modified integral control is able to tolerate an 80%
variation in the damping coefficient. This is significantly larger than the system with
pure integral control, indicating that the system with modified integral control is more
robust to variations in the damping coefficient (as well as other plant parameters). This
increase in robust stability comes at the cost of increased steady-state error as discussed
in Section 3.5.

Block diagrams of the centrifuge rotor control system are shown in Figure 2-22
and Figure 2-23. Figure 2-22 is the system used to design the controller. The dynamic

equations of motion are in the rotating coordinate frame and time delays are neglected.
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Since the time delays are small, they are neglected in the linear stability analysis, but they

are accounted for in the time domain simulation portion of the design in Chapter 4.

a
: L&D
spin rate
translation

disturbance

Plant (Rotating Frame Dynamics)

Co1 Moz Eoa Soa

Controller

Figure 2-22. Block Diagram of System used for Design

Figure 2-23 shows the system used to implement and test the controller. The
system is simulated using a solver based on the Runge-Kutta (4,5) numerical integration
scheme [21]. The dynamic equations of motion are in the fixed coordinate frame and
time delays are present. A coordinate transform is used to transit from the fixed
coordinate frame to the rotating coordinate frame. The symbols (Cp1,Mb2,Ep3,Ep4) denote

the commanded positions of the balancer masses.
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IC‘D »(D
spin rate = 3 translation
@ ‘> cosax sinax
disturbance KTs :
> | —sinax cosax |
z-1 Coord Transform
Integrator Plant
I-—-FL K _(Z_'1) €b1 an §b3 éb‘i
B 1z [© L% .
Mass Rgte Derivative Qutput P
Saturation Delay Controller Delay

Figure 2-23. Block Diagram of System used for Implementation

2.3 General Problem Statement

It is assumed that the following constraints apply to the ABC:

L. limit the peak translation (/¢ 2 + 5 ? ) of the rotor <, for all rodent

disturbances,
II. ensure stability over the range 0 < ® < Wmax,
III. be robust in the presence of spin rate(w), rotor mass (M), and rotor
inertia(lg,I,) uncertainty,
IV. limit commanded balancer mass speed < y», and
V. limit steady-state rotor translation < y; for a fixed disturbance (rodents are
stationary),
where the symbols y;,y2, and y; represent specific problem constraints to be defined in
Section 4.1. Note that the tilt of the rotor is not directly constrained since it contributes to

the translation of the rotor (which is constrained).
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3 Technical Background

Before introducing the design process of Chapter 4, some background in the
technical tools used to analyze the control system is necessary. In this section,
background in robust control for multi-input, multi-output (MIMO) systems is presented.
Also, steady-state error in control systems is examined. Finally, a robust constrained

optimization approach to control design is presented.

3.1 Multi-Input, Multi-Output (MIMO) Control

It is well known from classical control, single-input, single-output (SISO)
systems, that the gain of a system can be defined in terms of the frequency response or
Bode plot [22]. Defining the gain of a system for the MIMO case is less clear since a
Bode plot only represents the frequency response from a single input to a single output.

To describe system gain for the MIMO case, singular values are introduced [23].
Consider the transfer function matrix G with m inputs and n outputs. If G is evaluated at
a fixed frequency, ®, G(jo) is a constant n X m complex matrix. Any matrix G can be

decomposed into its singular value decomposition (SVD) [23]

H

G=UzV (57)

L |

where the symbol X is an n x m matrix with non-negative singular values, o;, in
descending order along the main diagonal, U is an n X n unitary matrix of output singular
vectors, and V is an m X m unitary matrix of input singular vectors.

The column vectors of U, u;, represent the output directions of the plant, while the

column vectors of V, v; represent the input directions of the plant. That is, if an input in
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the direction of v; is considered, the output will be in the direction u; and the signals are

related by the corresponding singular value. Specifically,

Gv,=0u, . (58)

It can be shown that the largest gain in any input direction is equal to the largest

singular value [24]. The largest singular value of a matrix is denoted by the symbol

0(G)=0,(G). (59)

To obtain the MIMO frequency response for G(s), G is evaluated at s=jm for the
interval ® for which the frequency response is desired. The maximum singular values are
then plotted as functions of ® to provide the maximum system gain at any frequency, .

The peak of this frequency response plot is known as the H-infinity norm of the

system([24], defined by the equation

|G|, = max5(G(jw))




To illustrate, the system [25] in Figure 3-1 is examined.

r e H

Figure 3-1. Control System Example

In this example, H and K are specified by the equations

and

9 -10

_| s+1 s+1
H(s)= 8 9

s+2 s+2

The transfer function from r to y can be written in the form

where

y=Tr,

T=(+HK)"H.

K

a7

(61)

(62)

(63)

(64)
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This matrix is evaluated at s=jw=0 to find the singular values of the system at

=0 rad/sec. This yields

-0.2903 0.3548

I'(jo=0) =[

0.6452 —0.6774}

Using SVD, this matrix can be written in the form

[ 0.6452 - 0.6774}

-0.2903 0.3548

—0.8983 0.4395|1.0413 -0.6790 0.7341
0.4395 0.8983 0.0310|| 0.7341 0.6790

}(66)

It is seen that the singular values at ®=0 are 6,=1.0413 and 6,=0.0310. Using
SVD for each frequency in a set of desired frequencies and plotting the maximum

singular value produces the frequency response plot in Figure 3-2.

Singular Values of T

iy
[¥)
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Singular Values (abs)
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o
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Figure 3-2. Maximum Singular Values
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It is verified that the maximum singular value at ®=0 is 6,=1.0413. Singular
values have two distinct advantages over eigenvalues for MIMO systems; they provide

information about the gains of the plant and they can be obtained for non-square plants.

3.2 Uncertain Systems

One of the problem constraints presented in Section 2.3 was that the system with
the ABC must be robust to uncertainty in plant parameters. Uncertainty in a control
system is the discrepancy between the actual system and the model of the system.
Uncertainty can arise from many sources. Some sources of uncertainty are [25]:

I. approximate or erroneously valued parameters in the plant,
II. ignored complexities (nonlinearities, time delays, etc.),
III. imperfections in sensors/actuators,
IV. unmodeled dynamics, and
V. model order reduction of the plant.

In general, uncertainty appears in two basic forms: parametric uncertainty and
unmodeled dynamics [28]. Parametric uncertainty will be the form of uncertainty
primarily examined in the design process for this thesis.

Uncertainty can be easily modeled in a feedback manner known as a linear
fractional transformation (LFT) [24][28][29]. Using LFTs it is possible to separate what
is known (model of the system (M)) from what is unknown (the bounded uncertainty (A))

in a feedback interconnection [28] as shown in Figure 3-3.
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>

A 4

M

Figure 3-3. Linear Fractional Transformation

In the case of unmodeled dynamics, A is any fully populated transfer function

matrix where
la). <1. (67)

This is known as unstructured uncertainty.

In the case of parametric uncertainty, A generally has a diagonal structure of the

form

ast M . (68)

Equation ( 67 ) still applies to the case of parametric uncertainty, but the structure of the
uncertainty is constrained to the form in Equation ( 68 ). This is known as structured
uncertainty. Generally, weighting functions are added to the plant so that Equation ( 67 )

is satisfied.
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To illustrate how system uncertainty can be formulated in an LFT framework, the
system in Figure 3-4 is considered. This is the same system considered in Section 3.1

with an uncertainty added in the input to the plant (or the actuator signal).

[+A H

K

Figure 3-4. Uncertain System Example

The symbols H and K are as defined in Section 3.1 and A has a diagonal structure.

Specifically,

A % (69
8, )

and §; and &, are allowed to vary on the interval [-0.8,0.8], allowing for 80% uncertainty

in each actuator signal. The uncertainties can be “pulled out” and the system and can be

re-arranged as in Figure 3-5.




Figure 3-5. Pulling out the Uncertainty

The symbol M represents the transfer function from us to ya.

diagram algebra, an expression for M is derived. Specifically,

Yo =—Ky ,

Ya :_KH(MA +)’A) ’

Y, =—-KHu, - KHy, ,

(I/+KH)y, =-KHu, ,

Va = -(I+KH)™ KHu, ;
and

M=-(+KH)"KH .

42

Using block

(70)

(71)

(72)

(73)

(74)

(75)
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Now, the system can be written as an LFT as in Figure 3-3. However, A must still be
normalized so that the norm bound on A is 1. Weighting functions, W; and W>, as shown

in Figure 3-6, are used to accomplish this scaling.

W2<—A<—W1<—

> M

Figure 3-6. Normalizing the Uncertainty

In this case, the weighting functions

W_o.s 0 783
Il 08
and
o L (77)
2710 1

normalize the uncertainty while allowing the actuator gain 80% uncertainty. The

weighting functions are appended to M to recast the system in the form of Figure 3-3

with A normalized to 1.
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3.3 Small Gain Theorem

The small gain theorem ties together the concepts of singular values and system
uncertainty to form the basis of the robust stability problem for MIMO systems. Robust
stability is achieved when all plants in a given uncertainty set are stable for all possible
perturbations [24]. Consider the system shown in Figure 3-7 where M(s) and A(s) are

strictly stable transfer function matrices.

Ve
\
>

vt
£
L

A+

M

A

Figure 3-7. Small Gain Theorem

The small gain theorem [29] states that for y >0 the interconnected system in

Figure 3-7 is well-posed and internally stable for all A(s) with
"A“m <1/y if and onlyif "MIL, <vy. (78)
This condition can be re-written as

oM (jw)F(A(jw)<1 Yao. (79)
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Commonly, the problem is posed such that A is norm-bounded by 1. In this case,

the robust stability (RS) condition based on the small gain theorem can be written as
RS & (M(jw)) <1V, (80)

Alternatively, the condition can be written as

RS & M| <1.

3.4 The Structured Singular Value

The small gain theorem provides the foundation for answering the problem of
robust stability. However, the small gain theorem is conservative for the case of
structured uncertainty, or parametric uncertainty, since it assumes an unstructured
perturbation. The structured singular value is an expansion of the small gain theorem
used to provide a less conservative answer to the question of robust stability (or robust
performance) subject to structured uncertainty. The structured singular value was first

introduced by Doyle in 1982 [26][27].

3.4.1 Robust Stability with the Structured Singular Value

The small gain theorem gives a condition for robust stability in Equation ( 80 ).
While this condition provides a method for evaluating robust stability, it is known to be
conservative for the case of structured uncertainty [25]. The structured singular value (p)

is introduced to provide a less conservative answer for the case of structured uncertainty.
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The structured singular value, W, is defined as

/UA(M)_ l

~ min{@(A) s.. det(1 - MA) =0}’ S

where the denominator is the maximum singular value of the smallest A that is able to
destabilize the system. While it is quite difficult to compute p directly, advanced
algorithms exist [28] to compute upper and lower bounds on p. This thesis will be
primarily concerned with the upper bound since it provides a slightly conservative
answer, while the lower bound often provides an answer that is not conservative enough.
From the small gain theorem, an initial upper bound on p can be formulated.

Specifically,
UM)<c(M(jw)). (83)

As previously stated, the bound in Equation ( 83 ) is known to be conservative for
the case of structured uncertainty. To reduce conservatism, scaling matrices, D and D™,
are introduced as shown in Figure 3-8. Figure 3-7 is replaced with Figure 3-8 for

evaluating robust stability with p.




Figure 3-8. Robust Stability with Scaling Matrices

Since A has a diagonal structure for the case of structured uncertainty and D is a block

diagonal scaling matrix,

DD =4 |

The block diagram can now be drawn as in Figure 3-9.

Figure 3-9. Simplified Robust Stability with Scaling
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The small gain theorem now provides the upper bound on p

um)<a(pmMD™ ) (85)

where D is a free parameter that can be used to get a less conservative upper bound on .
It follows that an optimal D can be found to find the least conservative upper bound on p,

which provides a new, less conservative condition for robust stability. That is,

RS < min|DMD™|_ <1, (86)
g s

To illustrate the advantage of using the structured singular value to determine
robust stability, the example from Section 3.2 is again considered. The system with
weighting functions as specified in Section 3.2 is presented in Figure 3-10. The system,

M, is taken to be the closed-loop transfer function, T, as defined in Section 3.1.

(e e A [ e e =
1 1 | ]
I 1 1 ]
| ] 1
: — W2 € E A <: W1 € :
I 1 1 ]
1 I I ]
] I 1 ]
] L J ]
1 | | JPS-SCaes
1 1
- » M
1 )
] |
]
: > M 1
1 I
] 1
1 I
G o G i o ) o e <o 3 e M i = |

Figure 3-10. System with Weighting Functions
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For evaluating robust stability, there are two conditions. Both provide an upper

bound on p. Specifically,

RS < &(M(jw))<1 Yo  SmallGain Theorem

RS & mDin"DHD"]L <1  Structured Singular Value (88)

The upper bounds on u for each case are plotted in Figure 3-11. In this case the
small gain theorem does not guarantee robust stability for the system since the peak value
is greater than 1. However, the structured singular value does guarantee robust stability
since the peak is below 1. Clearly, the small gain theorem is conservative in this case.
The structured singular value allows for a less conservative answer to the question of

robust stability through the use of the scaling matrices, D and D™

Small Gain Theorem vs. .

——— Small Gain Theorem
Structured Singular Value |

Upper Bound on p
Q =]
o™ 2]

=
IS

=
N

10° 10'
Frequency (rad/sec)

Figure 3-11. Small Gain Theorem vs. p
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3.4.2 Robust Performance with the Structured Singular Value

Robust performance is achieved when a given performance objective is achieved
for all plants in a given uncertainty set. More specifically, for the system in Figure 3-12,

robust performance is defined as

RP & |F|. < . (89)

>

Using LFT

Figure 3-12. Definition of Robust Performance

Generally, weighting functions are added to F so that the problem can be written

RP & |F|_ <1. (90)

The problem of robust performance can be treated in the framework of the
structured singular value by using the small gain theorem to convert the problem to a
robust stability problem. Since the requirement for robust performance in Equation ( 90 )
is the same as the small gain requirement for robust stability in Equation ( 81 ) where M

is replaced by F, the robust performance problem can be posed as a robust stability




ol |

problem. Figure 3-13 is a pictorial representation of a robust performance problem being
converted to a robust stability problem through the use of a fictitious uncertainty block Ap

[24].

RP & ||F|. <1 RS & ||F|, <1
sttt =
I I
| A b Ap
| !
! =D F b= I
M ' F
I Algebra Same Requirement as
e e ——- - Small Gain Theorem
M is nominal closed
loop system . T&
B
AP AP
RS & u;(M)<1VYw <:;‘ A [ <— & =
M L 3 M
Figure 3-13. Converting a RP Problem to a RS Problem
Now, if the robust stability requirement
RS & u;(M)<1 Vo (91)

is satisfied, robust performance is guaranteed. To illustrate how robust performance is
evaluated with the structured singular value, the example from Section 3.2 is again

examined. The system in Figure 3-14 is considered.



K

Figure 3-14. System for Robust Performance Problem

The symbol n represents the system input, sensor noise, and the symbol y
represents the variable to be regulated. It is assumed that for the system with 80%
actuator uncertainty, the performance objective is to limit the output, y, to 10% of the
sensor noise, n, at high frequencies (where sensor noise is most likely). This
performance objective requires that the system is robust to the sensor noise. To
normalize the performance objective to 1, weighting functions are added to the system as

shown in Figure 3-15.




Ya u
LA
Y
W, W,
T >é—> H 2y w, —
K W, |

Figure 3-15. System with Weighting Functions

The symbols W, and W, are as described in Section 3.2. The matrix

w =| ' (92)
e 10

serves to impose the 10% limit on the output of the system. Further, W, serves to impose
the robust performance requirement at high frequencies only. In this case the output is
required to be less than 10% of the sensor noise at frequencies above 100 rad/sec
(roughly where the plot of W,,’ (shown in Figure 3-16) nears 1). Specifically,

W"W"' (93)
n W'

n

and

. 8+1.73
"os+173.

(94)
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Weighting Function Wn'

08+

06+

Magnitude (abs)

0 —— e e LY = I | TV ST S8 W Y | YRR S T Y U7 | (A W R S VW
10" 10’ 10’ 10° 10° 10"
Frequency (rad/sec)

Figure 3-16. Weighting Function W'

This performance objective is evaluated using u. The upper bound of u is plotted

for the 10% requirement in Figure 3-17.
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Robust Perfomance - Limit error to 10%
14 : - ;
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Upper Bound on p
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Figure 3-17. Robust Performance Plot for 10% Requirement

Since the peak of the robust performance plot is greater than 1, the conditions for
robust performance are not satisfied. However, if the performance requirement is relaxed
to limit the output to 20% of the input signal over the same frequency range, robust

performance is achieved. The results are shown in Figure 3-18.




Robust Performance
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Figure 3-18. Comparison of 10% and 20% Requirements for Robust Performance

3.4.3 Real Parametric Uncertainty to Complex Uncertainty

For a complex uncertainty (unmodeled dynamics or complex parameter
uncertainty) W is a continuous function. However, W is not necessarily a continuous
function when all perturbation blocks are real, as is often the case for parametric
uncertainty [30]. This discontinuity can cause problems in the convergence of the bounds
on U [28].

In fact, in order to derive a more reliable bound for the design of the ABC, the
parametric uncertainty in the spin rate was treated as an uncertain complex parameter.
The interval for spin rate was then divided into several smaller complex intervals and
each interval was tested for robust stability and performance [31]. An illustration of how

the uncertainty in the spin rate was treated is shown in Figure 3-19.




Real Perturbation in o Complex Perturbations in ®

Im(c) Im(cw)

==

Figure 3-19. Real to Complex Uncertainty

The complex uncertainty representation is somewhat conservative since it allows
for a small complex contribution in the spin rate, which is not possible. However, the
complex representation contains the entire interval in the real uncertainty representation
and it allows for a more reliable computation of the bound on the structured singular

value.

3.4.4 Centrifuge Rotor System in p-analysis Framework

Figure 3-20 presents a pictorial representation of an uncertain centrifuge rotor
system formulated into a robust stability problem using the structured singular value.
The diagram describes the steps necessary to put the uncertain centrifuge rotor system in

the p-analysis framework.




Uncertain Parameters Uncertainty
Spin rate () / \

Rotor Mass (M) A
: M
Replace . With I: j I: j
these in ~ these

plant M

dynamics ¢

Now, the plant dynamics
can be put into the
following form

A<
E(G(jw))E(A(ja)))d Vo _ SmallGain j‘ Algebraic
Structure

s Theorem ‘ Manipulation <:|
Singular l

Value () P ]
ﬁ(G( jo)e(A(jw))<1 Yo v

~

If A is normalized to 1,
the requirement for P = Plant
robust stability is: K = Controller

w(G(jw)) <1

Figure 3-20. Evaluating System Robustness with the Structured Singular Value

3.5 Steady-State Error in Control Systems

One of the problem constraints as presented in Section 2.3 is to limit the steady-
state error in the centrifuge rotor system. It is common practice in control design to
introduce an integral term into the controller to eliminate steady-state error. This integral
term increases the system type. The system type is defined as the number of poles the
open-loop system (the transfer function from e to y in Figure 3-21) has at s = 0 [22].
Adding an integral term in the controller introduces a single pole at s = 0. The steady-
state error of a system can be expressed with respect to the system type and the input to
the system. For example, the steady-state error due to a step input for a type 0 system

and type 1 systems and higher is shown in Table 3-1.
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System Type Steady-State Error
Type 0 System €gs = constant
Type 1 (or higher) System es=0

Table 3-1. Steady-State Error due to Step Input

A controller utilizing only an integral term has the structure shown in Figure 3-21.
P is a type 0 system. Since an integral term has been added via the controller to a type 0

system, the system is now a type 1 system. It should have steady-state error of O for a

step input.

Figure 3-21. System with Pure Integral Control

If K is chosen so that the system is stable, the integral controller in Figure 3-21
will eliminate steady-state error. However, adding an integral term to the controller adds
a pole of the open-loop system on the jw-axis. Although this pole can be moved off the
axis for the closed-loop system, K is often constrained to be small to satisfy other
problem constraints. In this case, the pole is not moved far off of the jw-axis and this

close proximity to the unstable region can lead to poor system robustness. For this
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reason, it is often advantageous to use a modified integrator, such as in Figure 3-22, to
move the pole away from the jm-axis when p is a positive real number. The system is a

type O system and steady-state error is expected for a step input.

e | s+p

Figure 3-22. System with Modified Integral Control

The increase in system robustness for modified integral control comes at the cost
of allowing some steady-state error for a step input. This relationship is derived through

use of the final value theorem [22] which provides the relationship

lim f(¢) = lim sF(s). (95)

t—oo 5—0

The final value theorem relates the final value, or steady-state value in the time
domain, to the Laplace transform of a system evaluated at s=0. As an example, consider

the system presented in Figure 3-22 where the plant is defined by the equation

P=——— (96)

Since the steady-state error is of interest, the transfer function from r to e will be

evaluated. The closed-loop transfer function from r to e can be written in the form



e 1

1+P[ = ]
s+p

Evaluating this transfer function with the final value theorem yields a measure of
steady-state error as the ratio of the magnitude of the steady-state error to the magnitude
of the reference input signal.

First, make the substitutions

a,=—p .
m

The transfer function from r to e can be written in the form

2
a3s3 +a,s” +as+a,

a,s’ +a,s* +a,s+a, +K .

F(s)=
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To evaluate the steady-state error for a unit step input from r, the term (1/s) must be

added to account for the step input. Thus,

3 2
“+a,8" +a,5+% 1
e(s) = F(s)r(s) =—2—2° Thi7% ~ (103)
a;s+a,s"+as+a,+K s.

Now the term on the right side of Equation ( 95 ) is evaluated. That is,

k
e, =sF(s)r(s) , =—2_=_" (104)
Pt

F g ek k K
m .
where e is the steady-state error with a reference input of a unit step. It is seen that for
p=0, there is no steady-state error. Also, the steady-state error increases as p increases for
a given value of K. This is verified through time domain simulation for the case where
¢=10, k=1, m=1, K=1, and p=0.1. Based on Equation ( 104 ), a steady-state error of
0.091 is expected for a unit step input in r. The step response is shown in Figure 3-23 for

the system with a pure integrator and the system with a modified integrator.
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Figure 3-23. Step Response Comparison for Pure and Modified Integrator

It is seen from Figure 3-23 that the system with the pure integrator does not have

steady-state error, while the system with the modified integrator has steady-state error of

0.091 as expected. However the system with the pure integrator sacrifices system

robustness when compared to this system with the pure integrator. It is demonstrated in
this section that the system with the modified integrator is significantly more robust to
error in the sensor measurement. Sensor error is introduced as shown in the block

diagram in Figure 3-24.




Sensor

Gain

Figure 3-24. System with Sensor Error

Applying a sensor gain of 15, the systems are compared. The response of the

variable y is shown in Figure 3-25 for each system when r is a unit step input.

Comparison of Pure/Modified Integral Control

Sensor Gain =15

T T T L T T

pure integrator
modified integrator

L 1 1 1 1 1

ﬂ

|
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Time

70
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Figure 3-25. Comparison of Pure/Modified Integral Control
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While neither system follows the step input very well, it is clear that the system
with pure integral control is unstable, while the system with modified integral control is
stable. In fact, the gain margin for the system with pure integral control is 10 (20 dB),
while the gain margin for the system with modified integral control is 20.1 (26 dB). It is
notable that the system with the modified integrator has a gain margin twice as large as
the system with pure integral control while sacrificing steady-state error of 9.1%.

In the case of the centrifuge rotor, the steady-state error analysis is modified to
treat the MIMO case. If the step input r = ryymp * (1/s), then e = F * (1/5) * rymp. Using the
induced 2-norm (denoted as i2) to define performance, the steady-state error can be

expressed as

fel, <lF =0, (105)

rnmp

2
’

where the symbol F denotes the closed-loop transfer function from r (or the disturbance
in the case of the centrifuge rotor) to e (the translation in the case of the centrifuge rotor).
This equation is valid for the case where r is a signal with finite area under the curve. In
the case where r is a step input, the relationship is written using the induced 1-norm

(denoted as il) [32] as

le. ] <[FCs =0 Jrum . (106)

The steady-state error of the centrifuge rotor with a controller is analyzed in Section

4.3.1.2.




3.6 A Constrained Optimization Approach to Control Design

To design the ABC a procedure is proposed to combine both time domain and
frequency domain constraints [33][34]. The ABC design problem is first converted into a
constrained optimization problem where the translation of the rotor due to a fixed worst-
case imbalance during “spin-up” is minimized subject to problem constraints. A
constrained optimization approach is then applied to solve the problem.

A flow chart of the process used in a robust constrained optimization approach to
control design is shown in Figure 3-26. This process is applied to the mathematical
formulation of the control problem presented in Section 4.2 to generate an ABC. The

optimization problem is solved using a gradient-descent method [38][39][40].

I Initial Guess for K (controller)

LEvaIuate Obijective Function (e.g. rotor translation)

Evaluate Problem Constraints
(e.g. stability properties)

v
Adjust K to satisfy [ Are constraints satisfied?

constraints <————T
No
!

| Is Objective Function Minimized? J

Yes

Adjust K to minimize
objective function

No
Yes

l Controller Design Complete |

Figure 3-26. Flow of Robust Constrained Optimization Approach to Control Design
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This approach has also been used to design control systems for the International
Space Station Momentum Manager, an active vibration isolation system, and the Control
Momentum Gyroscope Flex Filter for the International Space Station [35][36][37]. A
major advantage of this approach is the capacity to deal with both time domain
constraints (such as rotor translation constraints) and frequency domain constraints (such

as robust stability specifications) simultaneously.
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4 Solution Method

To solve the ABC design problem, a robust constrained optimization approach to
control design is implemented. The problem to be solved is re-stated more specifically in
Section 4.1 and Section 4.2. A three stage design procedure is implemented and the

intermediate design results are presented in Section 4.3.

4.1 Problem Setup

It is assumed that the following specific constraints apply to the ABC:
I. limit the peak translation (W ) of the rotor < 3.5mm for all rodent
disturbances,
II. stability is required over the range 0 < ® < Opax,
III. be robust to uncertainty in:
a. spin rate (o) of 100%,
b. rotor mass (M) of 60%, and
c. rotor inertia (I4,1,) of 45%,
IV. limit commanded balancer mass speed < Imm/sec, and
V. limit steady-state rotor translation < O.Imm for a fixed disturbance
(rodents are stationary).
Note that the tilt of the rotor is not directly constrained since it contributes to the
translation of the rotor (which is constrained). The above formulation is a specific
statement of the problem to be solved from the more general problem statement presented

in Section 2.3.




4.2 Mathematical Problem Formulation

The mathematical formulation of the optimization problem can then be posed as:

Minimize
max]r|,

subject to
A(A-BK)<0

max"r"2 <3.5mm

|r(tﬁ,m, )|<0.1mm

#,, (G(jw)) <1

#, (G(jw)) <1
db mm
—_—

T
dt sec

(Objective Function)

(Nominal Stability) ,

(Nominal Performance) ,
(Nominal Performance) ,

(Robust Stability) ,

(Robust Performance) ,

(Actuator Limits) ,

(107)

(108)

(109)

(110)

£ 111)

(112)

where r(t)=[{(0) @] and b=[{,, n,, &, &.]. The symbols A and B denote

the state-space matrices of the coupled plant dynamics of Equations ( 52 ) and ( 53 ). The

symbol G is defined as the closed-loop centrifuge rotor system as shown in Figure 3-20

where the uncertainty is in the spin rate, rotor mass, and rotor inertia as defined in Section

4.1. In this formulation, the peak of the translational response of the rotor is minimized.
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4.3 Three Stage Solution Procedure

The controller design task is broken into three separate stages. This is done to
reduce the number of degrees-of-freedom and constraints in the optimization problem.
This approach is called “constraint relaxation” in the literature [41]. Since the equations
of motion of the plant can be easily decoupled (see Section 2.1), it is possible to design a
controller for the translational equations of motion (Equation ( 54 )) and a controller for
the tilting equations of motion (Equation ( 55 )) separately, making up the first two stages
of the design. The third stage then involves designing a controller for the coupled
dynamics (Equations ( 52 ) and ( 53 )), using the controllers resulting from stage 1 and
stage 2 as a starting point. Stage 3 is used to fill in the cross terms of the controller as
shown in Equation ( 117).

The final controller has the structure

b=Kx (114)

where
b=l e B fals (115)
x=lt n oo 0 En b b ¢ [n [ fol, (116)

and

X =[ K _tran, K_crosslm} (117)

K _cross2,, K_tiit,



71

K_tran is designed in stage 1, K_tilt is designed in stage 2, and K_crossl and K_cross2
are designed in stage 3. Overall, the controller design has 48 degrees of freedom (the
control gains of the K matrix), however, breaking the design task into three stages, it is
re-formulated as three separate optimization problems having 12, 12, and 24 degrees of
freedom, respectively. This reduction of the problem size allows the optimization routine

to converge more quickly and reliably.

4.3.1 Stage 1

As mentioned in Section 4.3, stage 1 involves the design of K_tran. After stage 1

is complete, the controller has the structure

02x6 02x6

K=|:K_tran2,‘.6 02x6j| (118)

The objective of stage 1 is to find K_tran such that the peak translation of the
rotor is minimized, while ensuring that the problem constraints are met. The peak
translation is defined by the maximum translation of the rotor during time domain
simulation. The scenario simulated includes a spin-up from 0 to the maximum spin rate.
The maximum spin rate is reached in 1800 seconds and the rotor continues to spin at this
rate until the simulation ends at 2500 seconds. The disturbance acting on the plant is the
disturbance resulting from the rodents being stationary in positions causing the largest
imbalance in the rotor (see Section 2.1). In addition to minimizing the translation, the
constraints in Equations ( 108 ) — ( 113 ) must be met as well. The mathematical

formulation is presented in Section 4.3.1.1.
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4.3.1.1 Stage 1 Problem Formulation

Minimize

max]r{, (Objective Function) (119)
N it (Nominal Stability) (120)
ominal Stability) ,

A(A-BK) <0 y
max"r"2 <3.5mm (Nominal Performance) , {121)
|7 (2 )| <0.1mm (Nominal Performance) , (122)
u, (G(jw))<1 (Robust Stability) , (123)
u,(G(jw) <1 (Robust Performance) , (124)

and
O o (Actuator Limits) , (125)
dt sec

where 7(t) = [ () n@)] and b = (£, m,,]" . The symbols A and B denote the state-
space matrices of the full coupled dynamics in Equations ( 52 ) and ( 53 ). The coupled
dynamic equations are used to check nominal stability to ensure that the controller will
not be unstable for the coupled system when stage 3 of the design process is reached.
The robust stability and robust performance measures must be met for the range 0 < ® <
®max and 60% rotor mass uncertainty from the nominal value. G is defined as the closed-

loop centrifuge rotor system as shown in Figure 3-20 where the uncertainty is in the spin

rate and rotor mass as defined above.




73

4.3.1.2 Stage 1 Design Loop Results

The constrained optimization problem was solved using the Matlab function
fmincon [38]. The initial guess to start the optimization process is K_tran = 0. The
optimization took over 1000 iterations to yield the final solution which is presented in
this section.

From Figure 4-1, it is apparent that the closed-loop system achieves nominal
stability since all of the poles lie to the left of the jw-axis. The poles that appear to lie
near the jw-axis are the result of the modified integrators that were appended to the
system. Since the modified integrators add poles at s = -0.0003 to the open-loop system,

these poles appear to be quite near the imaginary-axis, but are in the left half plane

(LHP).

Pole-Zero Map
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I

X
4 %
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Figure 4-1. Stage 1 - Nominal Stability
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Figure 4-2 shows the translation of the rotor when simulated under the conditions
described in Section 4.3.1. The peak translation of the rotor is well under the maximum
allowable translation 3.5mm. In fact, the peak translation is 2.52mm. Further, the
steady-state translation of the rotor is less than 0.10mm satisfying the requirement for

steady-state error (the constraint imposed on the final value of rotor translation).

x 107 Rotor Translation

4 T —_— T T

3.5

Max Allowable Translation

) e 2.52 mm ]

1.5+ .

Rotor Translation (m)
N

05} i
0. O_mrn

0 500 1000 1500 2000 2500
Time(s)

Figure 4-2. Stage 1 - Rotor Translation
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The steady-state error that is present in the response is due to the modified
integrators being used in the controller (see Section 3.5). Recall that in the MIMO case

steady-state error for a step input can be expressed as

le.]. <lF@s =0,

- (126)

oo ,

In the case of the centrifuge rotor, the symbol F denotes the closed-loop transfer
function from the rodent disturbance to rotor translation. The closed-loop centrifuge

rotor system for stage 1 yields

-0.00002 -0.00023| [0.3
8- el = 0.000078 m , (127)
il Moo

58

0.00021  -0.00003

where the maximum size of the elements in the vector r is 0.3. Since the maximum size
of the steady-state error is 0.000078 m in each direction ({ and n), the upper bound on
the translation is (0.000078% + 0.000078%)"* = 0.0001103m. From Figure 4-2, it is seen
that this relationship provides a good upper bound. The actual steady-state error is

slightly less than 0.0001m.
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Figure 4-3 indicates that the closed-loop system maintains stability for 60% mass
uncertainty over the range 0 < ® < Wmax since the upper bound of p < 1 at all frequencies.
The interval for ® was divided into several intervals to evaluate robust stability as shown
in Section 3.4.3. The plot of robust stability presented is the interval with the highest

peak for the upper bound of .

Upper Bound on p - Robust Stability
1 60% Mass Uncertainty

098¢ Robust Stability is

0.8 achieved (u<1)
0.7¢

D6}
1 0.5}
04
0.3¢
0.2;

0.1

10 10 107 10° 107
Frequency (rad/sec)

Figure 4-3. Stage 1 - Robust Stability
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The transfer function evaluated to analyze robust stability is the transfer function
from ua to ya shown in Figure 4-4. The uncertainty A is normalized to 1, and it
represents the uncertainty present in the rotor mass and rotor spin rate. The symbols D
and D' are as specified in Section 3.4 and represent scaling matrices used by the

structured singular value.

K

£

Figure 4-4. Block Diagram for Evaluating Robust Stability
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Figure 4-5 indicates that the closed-loop system achieves the performance
objective for 60% mass uncertainty over the range 0 < ® < Wmayx since the upper bound of
u < 1 at all frequencies. The interval for @ was again divided into several intervals. The

plot of robust performance presented is for the ® interval with the highest peak for p.

Upper Bound on p -Robust Performance
60% Mass Uncertainty

| Robust Performance

08} is achieved (u<1) -
0.7+

06+
1 05}
04}
03¢
0.2+

01}

U 1 1
10° 10" 107 10° 10°
Frequency (radfsec)

Figure 4-5. Stage 1 - Robust Performance

The robust performance objective was to limit rotor translation < 3.5mm for a
disturbance of maximum amplitude (as in the time domain simulation) and frequency
content from DC to 0.0001 Hz (0.000628 rad/sec). This performance objective is

formulated by appending weighting functions to the unweighted plant as in Section 3.4.2.
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The weighting functions are appended to the plant as shown in Figure 4-6 to
normalize the performance objective as stated above from d to e to a performance

objective from d’ to e’ as shown in Figure 4-6. The transfer function evaluated for robust

performance is [ua d’]T - [ya e’]T,

K

Figure 4-6. Weighting Functions for Robust Performance
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The weighting functions used to normalize the performance objective are

presented in Figure 4-7 and Figure 4-8 where

and

out

[Ww, }
W '()llf =
W .

(128)

(129)

The weighting function rolls off near 0.000628 rad/sec since the performance

objective is to reject disturbances with frequency content less than 0.0001 Hz (0.000628

rad/sec). The magnitude of the weighting function is 0.3 is since the largest expected

disturbance has a magnitude of 0.3.
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Figure 4-7. Stage 1 Weighting Functions - Input Weight
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Figure 4-8 shows the weighting function used to normalize the output to 1. Since

the largest allowable rotor translation is 3.5mm or 0.0035m at all frequencies, the

weighting function has the magnitude 285.7.

Magnitude (abs)
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Figure 4-8. Stage 1 Weighting Functions - Output Weight
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Figure 4-9 shows that in the time domain simulation the actuator saturation
constraints of Imm/s (0.001m/s) are not exceeded. By avoiding actuator saturation, the
linearity of the system is preserved. This is important because linear analysis results
(such as robust stability and robust performance) are not valid if the actuator constraints

are saturated since a system with saturation is not linear.
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Figure 4-9. Stage 1 - Actuator Constraints

It is seen that all of the constraints are met in stage 1 and the peak rotor translation

is minimized.




4.3.2 Stage 2

As stated in Section 4.3, stage 2 involves the design of K_tilt. After stage 2 is
complete, the controller has the form

- K _tran, Oz:y(, (130)
0. K _ult,

The objective of stage 2 is to find K_tilt such that the peak tilt of the rotor is
minimized, while ensuring that the problem constraints are met. The peak tilt is defined
by the maximum tilt of the rotor during time domain simulation. The scenario simulated
is the same as that in stage 1. In addition to minimizing the tilt, the stability, robustness,
steady-state error, and actuator constraints must be met as well. The mathematical

formulation is presented in Section 4.3.2.1.




4.3.2.1 Stage 2 Problem Formulation

Minimize

max]jg],

subject to
A(A-BK)<0

max|@|, < 0.6mrad

|0t 300)| < 0. 1mrad

U, (G(jw)<1

#,, (G(jw)) <1

db .mm
—_— 1._
dt sec

(Objective Function)

(Nominal Stability) ,

(Nominal Performance) ,
(Nominal Performance) ,

(Robust Stability) ,

(Robust Performance) ,

(Actuator Limits) ,

{ 137 )

where¢(t)=[¢((t) ¢,7(t)]'and b =&, &,.]. The symbols A and B denote the state-

space matrices of the full coupled dynamics in Equations ( 52 ) and ( 53 ). The robust

stability and robust performance measures must be met for the range of 0 < ® < Wmax and

30% independent inertia uncertainty in Iy and L.

This inertia uncertainty will be

increased to 45% in stage 3. G is defined as the closed-loop centrifuge rotor system as

shown in Figure 3-20 where the uncertainty is in the spin rate and rotor inertia as defined

above. The tilt of the rotor is not constrained in Equations ( 108 ) — ( 113 ) since in the

coupled system it contributes a small amount to the translation. However, that is not the

case in the uncoupled system used for stage 2 of the controller design, so the tilt is




85

constrained to be < 0.6 mrad (which would contribute 0.35mm of translation in the

coupled system or 10% of the maximum allowable translation).

4.3.2.2 Stage 2 Design Loop Results

The constrained optimization problem was solved using the Matlab function
fmincon [38]. The initial guess to start the optimization process is K_tilt = 0. The
optimization took over 1000 iterations to yield the final solution which will be presented
in this section.

From Figure 4-10, it is apparent that the closed-loop system achieves nominal

stability since all of the poles lie to the left of the jw-axis. As in Figure 4-1 the poles that

appear to lie near the jw-axis are in the LHP and are the result of the modified integrators

that were appended to the system.

Pole-Zero Map
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Figure 4-10. Stage 2 - Nominal Stability
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Figure 4-11 shows the tilt of the rotor when simulated under the conditions
described in Section 4.3.1. The peak tilt of the rotor is less than the maximum allowable
tilt of 0.6mrad. In fact, the peak tilt is 0.54mrad. Further, the steady-state tilt of the rotor
is less than 0.10mrad, satisfying the requirement for steady-state error (the constraint

imposed on the final value of rotor tilt).
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Figure 4-11. Stage 2 - Rotor Tilt
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Figure 4-12 indicates that the closed-loop system maintains stability for 30%
inertia uncertainty over the range 0 < ® < MW, since the upper bound of p < 1 at all
frequencies. Again, the interval for ® was divided into several intervals to evaluate
robust stability as shown in Section 3.4.3. The plot of robust stability presented is the
interval with the highest peak for the upper bound of u. The transfer function evaluated
to analyze robust stability is the same as that in Figure 4-4, but the uncertainty block
A represents uncertainty in the rotor inertia and rotor spin rate. The plant is the tilting

dynamics in Equation ( 55 ) and the controller is K_tilt.
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Figure 4-12. Stage 2 - Robust Stability
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Figure 4-13 shows that the closed-loop system achieves the performance objective
for 30% inertia uncertainty over the range 0 < @ < Wy,x since the upper bound of u < 1 at
all frequencies. The interval for ® was again divided into several intervals. The plot of

robust performance presented is for the ® interval with the highest peak for the upper

bound of p.
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Figure 4-13. Stage 2 - Robust Performance

The robust performance objective in stage 2 was to limit the tilt of the rotor <
0.6mrad for a disturbance of maximum amplitude (as in the time domain simulation) and
frequency content from DC to 0.0001 Hz (0.000628 rad/sec). This performance objective

is formulated by appending weighting functions to the unweighted plant.
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The weighting functions are appended to the plant as shown in Figure 4-6. Again

the transfer function evaluated is [u, d’]" —» [ya €']" from Figure 4-6. The weighting

functions used to normalize the performance objective for stage 2 are presented in Figure

4-14 and Figure 4-15 where

Wou
A [ } (139)
W .

The weighting function for the input to the system rolls off near 0.000628 rad/sec
since the performance objective is to reject disturbances with frequency content less than

that. The magnitude of the weighting functions at low frequencies is 0.00033 since that

is the magnitude of the largest expected disturbance in the frequency range.

-3 Stage 2 Weighting Functions - W,

e - - e

x 10

Magnitude (abs)
— N
- n N o w

o
o

(=

Frequency (rad/sec)

Figure 4-14. Stage 2 Weighting Functions - Input Weight
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Figure 4-15 shows the weighting function used to normalize the output to 1.
Since the largest allowable rotor tilt is 0.6mrad or 0.0006rad at all frequencies, the

weighting function has the magnitude 1666.7.
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Figure 4-15. Stage 2 Weighting Function - Qutput Weight
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Figure 4-16 shows that in the time domain simulation, the actuator saturation
constraints of Imm/sec or 0.001m/sec are not exceeded. In fact, the mass rates are far
from the saturation limits. The lower plot is a closer view of the mass rates. By avoiding

actuator saturation, the linearity of the system is preserved.
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Figure 4-16. Stage 2 - Actuator Constraints

It is seen that all of the constraints are met in stage 2 and the peak rotor tilt is

minimized.
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4.3.3 Stage 3

As mentioned in Section 4.3, stage 3 involves the design of K_crossl and
K_cross2. These sub-matrices are designed simultaneously allowing for 24 degrees of
freedom (12 for each K_cross matrix) in the stage 3 problem formulation After stage 3

is complete, the controller has the form

K _tran, , K _crossl,
K = “ & (140)

K_cross2,, K_iit, .

The objective of stage 3 is to find K_crossl and K_cross2 such that the peak
translation of the rotor is minimized, while ensuring that the problem constraints are met.
Further, it is desirable to increase the amount of inertia uncertainty that the system can
tolerate. The requirement for inertia uncertainty is increased to 45% uncertainty in both
I4 and I,. In addition to minimizing the translation, the constraints in Equations ( 108 ) —
( 113 ) must be met as well. The mathematical formulation is presented in Section
4.3.3.1. This formulation is the same as formulation in Section 4.2 since stage 3 is the
last stage in the design process and all problem constraints must be met for the system

with coupled dynamics.




4.3.3.1 Stage 3 Problem Formulation

Mlmmlzemax| ’1

2

subject to
A(A-BK)<0

max"r - 3.5mm

lr(tﬁ,m, )|<0.1mm

#, (G(jw))<1

U, (G(jw)) <1

db mm
SR l_
dt sec

(Objective Function)

(Nominal Stability) ,

(Nominal Performance) ,

(Nominal Performance) ,

(Robust Stability) ,

(Robust Performance) ,

(Actuator Limits) ,

(147)

where r(t)=[¢(t) n@)] and b=[¢,, n,, &, &.]°. The symbols A and B denote

the state-space matrices of the full coupled dynamics in Equations ( 52 ) and ( 53 ). The

robust stability and robust performance measures must be met for the range of 0 < w <

®max, 45% of rotor inertia uncertainty in both I, and I, and 60% rotor mass uncertainty

from the nominal value. G is defined as the closed-loop centrifuge rotor system as shown

in Figure 3-20 where the uncertainty is in the spin rate, rotor mass, and rotor inertia as

defined above.
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4.3.3.2 Stage 3 Design Loop Results

The constrained optimization problem was solved using the Matlab function
Sfmincon [38]. The initial guess to start the optimization process is K_crossl = K_cross2
= 0. The optimization took over 1000 iterations to yield the final solution which will
be presented in this section.

From Figure 4-17, it is apparent that the closed-loop system achieves nominal
stability since all of the poles lie to the left of the jw-axis. As in Figure 4-1 and Figure
4-10 the poles that appear to lie near the jw-axis are in the LHP and are the result of the

modified integrators that were appended to the system.
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Figure 4-17. Stage 3 - Nominal Stability
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Figure 4-18 shows the translation of the rotor when simulated under the
conditions described in Section 4.3.1. The peak translation of the rotor is well under the
maximum allowable translation of 3.5mm. In fact, the peak translation is 2.54mm. It is
seen that the peak translation is slightly higher than the final result of stage 1. This is due
to the fact that the coupled dynamic equations of motion include the contribution from
the tilt in the rotor translation. Further, the steady-state translation of the rotor is less than
0.10mm satisfying the requirement for steady-state error (the constraint imposed on the

final value of rotor translation).
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Figure 4-18. Stage 3 - Rotor Translation
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Figure 4-19 indicates that the closed-loop system maintains stability for 60% rotor
mass uncertainty and 45% rotor inertia uncertainty over the range 0 < ® < Wn,x since the
upper bound of p < 1 at all frequencies. The interval for @ was again divided into several
intervals to evaluate robust. The plot of robust stability presented is the interval with the
highest peak for the upper bound of pu. The transfer function evaluated is the same as that

evaluated in stage 1 and stage 2 of the design process, but the plant includes the full
coupled dynamics and the uncertainty is in the rotor mass, rotor inertia, and rotor spin

rate.
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Figure 4-19. Stage 3 - Robust Stability
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Figure 4-20 shows that the closed-loop system achieves the performance objective
for 60% rotor mass uncertainty and 45% rotor inertia over the range 0 < ® < ®pay Since
the upper bound of pu < 1 at all frequencies. Again, the interval for ® was again divided
into several intervals. The plot of robust performance presented is for the ® interval with
the highest peak for the upper bound on p. The transfer function evaluated is the same as

that in stage 1 and stage 2 of the design process, but the plant includes the full coupled

dynamics and the uncertainty is in the rotor mass, rotor inertia, and rotor spin rate.
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Figure 4-20. Stage 3 - Robust Performance




98

The robust performance objective was to limit the translation of the rotor <
3.5mm for a disturbance of maximum amplitude (as in the time domain simulation) and
frequency content from DC to 0.0001 Hz (0.000628 rad/sec). This performance objective
is formulated by appending weighting functions to the unweighted plant.

The weighting functions are appended to the plant as shown in Figure 4-6 in order
to normalize the performance objective as stated above from d to e to a performance
objective fromd’ toe’.

The weighting functions used to normalize the performance objective for stage 3

are a combination of the weighting functions for stage 1 and stage 2. Specifically,

W,

in stagel

Win stagel

w. =
in stage3 W ( 148 )

in stage 2

in stage 2
and

out stage |

4
- out stagel
out stage3 — w ( 149 )
out stage 2

W

out stage 2
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Figure 4-21 shows that in the time domain simulation the actuator saturation
constraints of Imm/sec or 0.001m/sec are not exceeded. By avoiding actuator saturation
the linearity of the system is preserved.
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Figure 4-21. Stage 3 - Actuator Constraints

It is seen that all of the problem constraints specified in Equations ( 108 ) — ( 113 )

are met in stage 3 and the peak translational response of the rotor is minimized resulting

in the final design of the ABC.
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5 Results

In order to further examine of the effectiveness of the ABC design presented in
Chapter 4, analysis was performed using frequency domain techniques to further analyze
stability and time domain simulation (including Monte Carlo simulation) to further
analyze performance. Much of the needed analysis was done during the design phase in
Chapter 4 where nominal stability, nominal performance, robust stability, robust
performance, and actuator saturation are analyzed for the linear system in the design
phase. In this chapter, both stability margin analysis and nonlinear time domain analysis

are performed to further verify the ABC design.

5.1 Stability Margin

Frequency domain stability and performance results are seen in Figure 4-19 and
Figure 4-20 in Chapter 4 for the final ABC. These results guarantee the stability and
performance of the closed-loop system for the range of possible spin rates and for
parametric variations of 60% in the mass of the rotor (M) and 45% in the transverse
moment of inertia (Ig) and polar moment of inertia (I,) values. These requirements were
the primary stability constraints of the control design. This section provides further
verification of the stability of the system.

As an additional measure of the stability of the closed-loop system, gain margin
and phase margin are calculated. Gain margin refers to the amount of gain that could be
multiplied by the signal at the point where the loop break is shown while maintaining
closed-loop stability. Phase margin refers to the amount phase that could be added to the

signal at the point where the loop break is shown while maintaining closed-loop stability.
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The control system is analyzed one loop at a time. The loops are shown in Figure
5-1 and Figure 5-2. First, the stability margins are evaluated at the input to the plant (in
the actuator signal). Next, the stability margins are evaluated at the output of the plant (in
the sensor signal).

The stability margins at the input of the plant as shown in Figure 5-1 are
presented in Table 5-1. All stability margins are computed for the plant with a nominal
spin rate, Wmax/2.
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Figure 5-1. Loop Break for SISO Stability Margins at Plant Input

Traditional guidelines for good stability are gain/phase margins of 6dB/30deg or
better. From the results in Table 5-1, it is apparent that the gain margins far exceed 6dB,
with the smallest gain margin in the &y - &p3 loop being 18.5dB. The smallest phase
margin, 28.9 deg occurs in the Ny, -~ M2 loop. While this is slightly less than 30 deg

phase margin, it is acceptable.




Gain Margin(dB) | Phase Margin(deg)
“
i T 34.7 37.5

NMb2 > Nb2 31.0 28.9

B 185 102.7

bow Bl Inf 107.8

Table 5-1. SISO Stability Margins at Plant Input for Nominal Spin Rate

The stability margins at the output of the plant as shown in Figure 5-2 are
presented in Table 5-2. All stability margins are computed for the plant with a nominal

spin rate, Wmax/2.
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Figure 5-2. Loop Break for SISO Stability Margins at Plant Qutput
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The results in Table 5-2 indicate that the gain margins at the output of the plant

far exceed the traditional guideline of at least 6dB. Similar to the phase margin in the
Nb2- Nov2 loop at the input of the plant, the n_int - n_int loop at the output of the plant has
a phase margin of approximately 28 deg. Again, while this is slightly less than 30 deg

phase margin, it is acceptable. The notations _dot and _int denote the derivative and

integral of the associated variable.

Gain Margin(dB) | Phase Margin(deg)

T (¢ 55.2 - Inf
n-n 44.9 Inf
oc > O 30.5 Inf

Oy = O 45.3 Inf
¢_dot - {_dot 43.4 Inf
n_dot - m_dot 37.9 Inf
¢¢_dot - ¢r_dot Inf Inf
On_dot > ¢_dot 21.1 Inf
Cint— ¢int 36.0 37.5
n_int - _int 35.3 27.9
Oc_int - ¢ _int 312 83.1
On_int - On_int 43.6 100.2

Table 5-2. SISO Stability Margins at Plant Output for Nominal Spin Rate

Although gain/phase margins were not constrained during the design process, the
resulting system has good gain/phase margins. This is primarily a result of two
constraints that were in the design process. First, the design process required that the

system be robustly stable to large parametric uncertainty in the rotor mass and the rotor
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inertia. Since changing these parameters changes the gain of the plant, the controller had
to be robust to gain uncertainty, yielding acceptable gain margin. Second, the constraints
on the speed of the balancer masses necessitated that the controller gains sta<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>